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Abstract
The simplicial depth (SD) of a query point q ∈ R

d with respect to a dataset S ⊂ R
d is defined based on counting all (d +1)-

dimensional simplices obtained from S that contain q. The simplicial depth is a ranking function which is frequently used in
order to sort a multivariate dataset. In the higher dimension d, no better algorithm is known than the brute force method which
takesΘ(nd+1) time, where |S| = n. Unfortunately, in contrast to the many advantages that have been previously identified by
research studies, this depth function requires a massive amount of computation particularly for higher dimensional datasets.
This challenge could be overcome by offloading the computation to cloud servers. However, delegating simplicial depth
queries to not fully trusted cloud servers would be a source of serious security breaches and privacy issues. Therefore, in this
paper, we target the privacy-preserving simplicial depth query over collaborative cloud servers. To this end, two resource-
abundant cloud servers will be employed to perform such time consuming computation while maintaining the user’s privacy.
Security analysis shows our proposed scheme achieves privacy-preserving requirements. In addition, some experiments
based on a dataset generated by normal distribution are conducted, and the results validate the efficiency and practicality of
our proposed scheme. Although this work only focuses on the planar case, our proposed scheme can be extended into higher
dimension cases without significant alterations.

Keywords Computational geometry · Data depth · Simplicial depth · Privacy-preserving · Homomorphic encryption ·
Collaborative cloud · Computation offloading

1 Introduction

The rank statistic tests play an important role in univariate
non-parametric statistics. If one attempts to generalize the
rank tests to the multivariate case, the problem of defining
a multivariate order statistic will occur. One approach to
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overcome this problem is to use the notion of data depth.
A depth function, as a tool in non-parametric multivariate
data analysis, measures the centrality of a point in a given
dataset. In other words, it indicates how deep a point is
located with respect to the dataset. Applying a data depth
on a dataset generates a partial ordered set (poset) of the
data points. Over the last decades, various notions of data
depth such as halfspace depth (Hotelling, 1929, [18, 38];
Tukey, 1975, [41]), simplicial depth (Liu, 1990, [23]) Oja
depth (Oja, 1983, [30]), regression depth (Rousseeuw and
Hubert, 1999, [35]) have emerged as powerful tools for
non-parametric multivariate data analysis. Most of them
have been defined to solve specific problems in data
analysis. They are different in application, definition, and
the geometry of their central regions (regions with the
maximal depth). Some notable research on the algorithmic
aspects of planar data depth can be found in [4, 8, 25].
Among all of these depth functions, we focus on the
simplicial depth [23] because of its various applications in
statistics and data analysis. The simplicial depth of a query
point q ∈ R

d with respect to a given dataset S ⊂ R
d
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is defined by counting all simplices1 in S that contain
q. This value can be normalized using the normalization
factor 1/

( |S|
d+1

)
. Although there is an O(n log n) algorithm

in R
2, an O(n2) algorithm in R

3, and an O(n4) algorithm
in R

4, the brute force method which takes Θ(nd+1) time
is the best available algorithm for computing simplicial
depth in R

d . It is generally understood that any superlinear
algorithm is impractical for sufficiently large dataset S.
As the dimension d grows, the threshold at which local
computations become impractical shrinks rapidly. It is
thus worth investigating how expensive simplicial depth
calculations can be offload to the large scale computational
resources available in the cloud.

Cloud computing allows data owners to handle extremely
complex computations on massive amounts of data in a
near real-time manner with substantially reduced cost. In
other words, instead of locally processing high-dimensional
datasets and being impeded by technical barriers, companies
have an opportunity to outsource their computations to
abundant cloud computing peers [19]. Along with clear
technical and economic benefits, such offloading brings
privacy concerns. Unless addressed, these concerns would
deter data owners from outsourcing their computations [34].
Although applying legacy data encryption would alleviate
security and privacy concerns, it does not support logical
comparison and mathematical calculation over ciphertexts.
In order to obtain the corresponding results in the
plaintext mode, cloud servers are required to enforce
desired computations on given encrypted data. To do this,
Homomorphic Encryption (HE) is a generally accepted
method. HE diminishes privacy concerns by enabling the
cloud servers to carry out computation on ciphertext, and
preserves the crypto-ecosystem properties. It is worth noting
that HE schemes are broadly categorized into three types:
partially, somewhat, and fully [1]. Each of which has
different limitations and strengths.

In this paper, aiming at addressing the above challenges,
we would like to apply HE techniques to achieve privacy
preserving simplicial depth computation over collaborative
cloud servers. As far as we know, this paper is the first study
to achieve those goals simultaneously. To sum up, the main
contributions of this paper are three-fold:

– We propose a privacy preserving simplicial depth query
(PSDQ) scheme, which securely offloads required
computation to cloud servers. To this end, BFV
homomorphic encryption [13] is used to evaluate the
corresponding mathematical circuits of the simplicial
depth queries. The optimal security parameters of
BFV have been obtained to support the multiplicative
depth=3 in the proposed PSDQ.

1A simplex in R is a line segment, in R
2 is a triangle, in R

3 is a
tetrahedron, etc.

– Although our proposed PSDQ can undertake the
query processing with an acceptable execution time
taking some preprocessing steps will improve its
performance. In the improved-PSDQ, the underlying
time consuming determinant calculations have been
precomputed by the query processing server. Our
evaluations show the improved version will outperform
the basic PSDQ. It should be noted that precomputing
determinants and their squared values will significantly
enhance response time when datasets with large number
of samples are offloaded.

– We do thorough experiments to evaluate the perfor-
mance of PSDQ in dealing with floating point values.
In PSDQ, scaling factor ϕ to handle floating-point
datasets has been introduced. Corresponding contour
diagrams for specific scale factors have been included
to visualize the differences. Moreover, two dissimilarity
metrics along with an accuracy measures are introduced
in order to investigate the correctness of results.

The remainder of the paper is structured as follows. In
Section 2, related work is discussed. Section 3 contains
some preliminaries for this study. The system and security
models along with design goals are introduced in Section 4
followed by our proposed PSDQ in Section 5. The security
analysis of PSDQ and the detailed experimental results
are organized in Sections 6 and 7, respectively. Finally,
conclusion and future work are discussed in Section 8.

2 Related work

In the extant privacy-preserving literature, various solutions
have be discussed to enable computational geometry
algorithms over encrypted datasets. A short list of the
most important and well-known privacy preserving relevant
studies could be identified as follows: multivariate statistical
estimation [27, 40, 43], range counting [43], convex hull
computation [15], and related geometric algorithms [12,
22].

More specifically, the following outcomes could be
extracted from these aforementioned studies. Regarding
multivariate statistical estimation, in [27, 43], the authors
have investigated the possibility of applying fully homo-
morphic encryption for large scale statistical analysis. As
another work in this domain, [40] has demonstrated that
for a given distribution and a class of statistical estimators,
there exists a differentially private estimator with the same
distribution. Privacy preserving methods have been applied
into the area of computational geometry. In this regard, con-
vex hull, which is one of the most explored problems in
computational geometry, is studied in [15]. The authors pre-
sented a secure multi-party computation (SMC) protocol to
compute the convex hull of a given set of planar points
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with k computational parties in a privacy preserving manner.
The authors in [12] also utilized a SMC protocol to present
a privacy preserving optimal data-oblivious algorithm to
construct the planar convex hull of a geographic dataset.
Additionally, for a set of n points, optimal algorithms for
well-separated pair decomposition, compressed quadtree
construction, closest pairs, and all nearest neighbor finding
are addressed in [12]. Privacy preserving computation on
conic sections, as a branch of computational geometry prob-
lems, has been addressed in [22]. In particular, the authors
presented secure efficient constant-round protocols for solv-
ing point-included and line-intersected problems on conic
sections in a semi-honest model. To achieve privacy pro-
tection, they demonstrated a secure two-party computation
model by adopting the following building blocks: secure
two-party computation, Paillier HE scheme [31], and secure
scalar product protocol.

The present work is related to both computational
geometry and (broadly speaking) multivariate statistical
estimation, but to the best of our knowledge is the first
work which focuses on the privacy preserving computation
of simplicial depth. Our scheme accepts the encrypted
datasets and securely performs simplicial depth query that
can protect not only the datseset but also the query.

3 Preliminaries

In this section, we give an overview of simplicial depth, and
recall the Homomorphic Encryption scheme [36], which
will serve as the basis of our proposed scheme.

3.1 Simplicial depth calculation

The simplicial depth of a query point q ∈ R
d with respect

to S = {x1, ..., xn} ⊂ R
d is defined as the total number of

the closed simplices formed by data points that contain q.
This definition can be given by (1).

SD(q; S) = μ
∑

(x1,...,xd+1)
I (q ∈ Conv[x1, ..., xd+1]),

(1)

where μ = 1/
(

n
d+1

)
is the normalization factor, the convex

hull Conv[x1, ..., xd+1] is a closed simplex formed by d +1
points of S, and I is the indicator function. For S =
{a, b, c, d, e} in R

2, Fig. 1 illustrates that SD(q1; S) =
3/10, whereas SD(q2; S) = 4/10.

The simplicial depth of q ∈ R
d with respect to the

distribution function F is defined as follows:

SD(q; F) = PF (q ∈ Simplex[x1, . . . , xd+1]),
where Simplex[x1, . . . , xd+1] is a random simplex of i.i.d
observations x1, . . . , xd+1 from F , and PF is representing
the probability corresponding to F .

Liu [24] proved that the simplicial depth is affinely
invariant. Depending on the distribution of data points, the
simplicial depth has completely different characteristics.
For a Lebesgue-continuous distribution [16], simplicial
depth changes continuously (Theorem 2 in [23]), decreases
monotonically on the rays, and has a unique central
region [23, 29]. Furthermore, the contours defined by
simplicial depth are nested (Theorem 3 in [23]). However,
if the distribution is discrete, these characteristics are not
necessary applicable [44]. Unlike the contours of halfspace
depth which are convex, the contours of simplicial depth
are only starshaped (Section 2.3.3 in [29]). It is known that
the breakdown point of the simplicial median (i.e. the point
with maximal simplicial depth) is always worse than the
breakdown point of halfspace median [9]. The behaviour of
simplicial depth contours is not as nice as the behaviour of
half-space depth contours [17, 28]. As an example, Fig. 2
illustrates that some of the simplicial depth contours may
not be nested. It can be seen that the contour enclosing all
points of depth 10/20 = 0.5 and up is not surrounded by the
contour enclosing depth of 8/20 = 0.4 and up.

Simplicial depth is widely studied in the literature. Some
results regarding the simplicial depth can be listed as
follows.

– The simplicial depth of a query point in R
2 can be

computed using an optimal algorithm which takes
Θ(n log n) time [2, 3, 20].

– The simplicial depth of a point in R
3 can be computed

in O(n2), and in R
4 the fastest known algorithm needs

Fig. 1 Two examples of
simplicial depth in the plane
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Fig. 2 Simplicial depth contours

O(n4) time [10]. In the higher dimension d, no better
algorithm is known than the brute force method with
Θ(nd+1) time.

3.2 Homomorphic encryption techniques

Homomorphic Encryption will effectively encourage the
data owners to migrate their computation to cloud not only
by reducing capital/operational costs, but also by enhanc-
ing privacy protection. It therefore adequately provides the
opportunity to both store and process encrypted data. It
can be broadly categorized into partially, somewhat, and
fully forms with respect to the number of acceptable and
supported operations. Recall that partially homomorphic
encryption schemes support only either addition or multipli-
cation function, whereas somewhat homomorphic schemes
accept limited number of both aforesaid operations. Finally,
fully homomorphic encryption schemes will tolerate arbi-
trary number of operations (i.e. both multiplication and
addition). For example, RSA [33] and El-Gamal [11] are
multiplicative, and Paillier [31] is an additive partially
homomorphic schemes. However, BGN [5] is a some-
what homomorphic encryption that supports both addition
and multiplication with the subtle difference that accepts
arbitrary number of additions and only one multiplication.

Each HE scheme will be identified by four operations:
KeyGen, Enc, Dec, and Eval function which performs the
function f over ciphertext arguments. Moreover, they can
utilize identical symmetric or distinct asymmetric keys for
data encryption and ciphertext decryption. In symmetric
mode both data owner and computational server are initiated
by same keys whereas in asymmetric mode the private key
must be kept absolutely private by data owner. Conversely,
the public key can be safely disseminated to cloud servers.

During the recent decade, HE has received intense attention
after the emergence of Fully Homomorphic Encryption. It
led to a major breakthrough in practical computation offload-
ing, where the proposed FHE schemes will be realistically
able to carry out any desirable operations on ciphertexts.

In the decade since Gentry’s groundbreaking paper [14],
the follow-up studies can be broken down into four
main approaches: Ideal Lattice-based [14, 39], over Inte-
gers [42], (Ring)LWE-based (Learning with Error) [7],
and NTRU-like [26]. Although the later schemes have
improved the efficiency and performance of the imple-
mentations, the overhead and cost of the FHE implemen-
tations are highly application dependent. As an exam-
ple, in [32], it is discussed that RLWE-based FHE has
higher efficiency with a stronger security proof than LWE,
but neither scheme is suitable for calculations involving
division.

In order to encrypt the dataset, we utilize the recently
implemented optimized BFV leveled-FHE scheme [36].
The BFV homomorphic scheme (based on Ring-LWE)
comes originally from Brakerski’s LWE-based fully homo-
morphic scheme which has been extended to Ring-LWE
by Fan and Vercauteren [13]. This extension will empower
the original scheme to realize fast and effective compu-
tation. Among different encryption schemes in the litera-
ture, two Ring-LWE-based leveled homomorphic encryp-
tion schemes, namely BFV and YASHE [6] are compared
in [21]. Although YASHE is faster than BFV in some
aspects, we prefer to use BFV in this study. The reason
behind this preference is a distinguishable property of BFV
which has practically and theoretically smaller noise growth
during the homomorphic computation. In particular, BFV
has been chosen because its noise growth is slower in the
presence of multiplication operations (frequently used in
simplicial depth computations). We briefly recall the BFV
Ring-LWE based homomorphic encryption which will serve
as our underlying building block.

– Parameter Generation: Given the security parameter λ,
corresponding output
(d, κ, t, χkey, χerr , w) will be obtained, where:

� Polynomial modulus d is a posi-
tive integer that defines ring R =
Z[x]/ (Φd(x)), in which Φd(x) ∈ Z[x]
is the d-th irreducible cyclotomic poly-
nomial.

� coefficient modulus κ and plaintext
modulus t satisfy 1 < t < κ .

� Two discrete and bounded probability
distributions χkey and χerr are chosen
based on R.

� w > 1 as an integer is the base of
logarithm in � = �logwκ�.

– Key Generation: The private, public, and relinearisation
keys of the scheme are generated as follows:

� Private key SK = s can be obtained by
sampling on χkey .

Peer-to-Peer Netw. Appl. (2020) 13:412–423 415



� Public key PK = (b, a), where b =
[−(as + e)]κ in which a and e are two
uniformly random samples as: a ← Rκ

and e ← χerr .
� Relinearisation key RelinK = ζ = ([wi ·

s2−(ei+ai ·s)]κ , ai) ∈ R�, where ai ←
Rκ and ei ← χerr for i ∈ [0, 1, ..., �].

– Encryption: Given public key PK = (b, a), ciphertext c
for plaintext message m in message space R/tR can be
calculated as

c = (c0, c1) = ([
Δ [m]t + bu + e1

]
κ
, [au + e2]κ

) ∈ R2,

where e1, e2 are two samples from χerr , u is a sample
from χkey , and Δ = �κ/t�.

– Decryption: Given the ciphertext c = (c0, c1), the
corresponding message

m = [� t
κ

· [c0 + c1s]κ�]
t

∈ R can be recovered by
the private key SK = s.

– Addition (⊕): Given two ciphertexts c = (c0, c1) and
c′ = (c′

0, c
′
1), c⊕ = ([c0 + c′

0]κ , [c1 + c′
1]κ).

– Subtraction (
): Given two ciphertexts c = (c0, c1) and
c′ = (c′

0, c
′
1), c
 = ([c0 − c′

0]κ , [c1 − c′
1]κ).

– Multiplication (⊗): Given two ciphertexts c = (c0, c1),
c′ = (c′

0, c
′
1), and relinearisation key RelinK = ζ =

(ζ0, ζ1),
c⊗ = Relinearization(C0, C1, C2, ζ )

=
(
(C0 + ∑�

i=0 ζ0i · C2i ), (C1 + ∑�
i=0 ζ1i · C2i )

)
, where

C0 =
[
� t

κ
· c0 · c′

0�
]

κ

C1 =
[
� t

κ
· (

c0 · c′
1 + c1 · c′

0

)�
]

κ

C2 =
[
� t

κ
· c1 · c′

1�
]

κ

4Models and design goal

In this section, we describe our system model, security
model, related assumptions, and finally identify our design
goal.

4.1 Systemmodel

The schematic in Fig. 3 depicts the overall system archi-
tecture. The main configuration components to compute
the privacy-preserving simplicial depth of a query point are
described next.

– Dataset Owner: This entity is a data asset owner who
wants to perform basic operations to manipulate data.
The dataset owner can specify the data dissemination
process when the data is stored on the cloud. Typically
the key generation phase will be initiated by dataset
owner, and subsequent key storage and distribution
steps should be considered in this phase. Meanwhile,
different encrypted scaled versions of the dataset would
be uploaded to adapt the proposed system to support
floating point data.

– Client Users: They submit encrypted query points q ∈
R

d to the query processing server in order to obtain
the simplicial depth value. Before submitting the query
point, the client users encrypt each number using the
public key (PK) which has been made available by
the dataset owner. On the other hand, after receiving
queries from client users, the query processing server
is responsible for running Algorithm 1 to generate
intermediate batch results. These batch values will be
sent to the query response server where the final results
will be obtained.

– Collaborative Cloud-side Servers: To securely
offload simplicial depth computation over the cloud,

Fig. 3 System model of the
privacy-preserving simplicial
depth query
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two cloud side servers (denoted by the dotted rectan-
gle in Fig. 3) have been considered in our proposed
scheme. Both the query processing server and the query
response server are resource-abundant components
that will work collaboratively to support our proposed
PSDQ scheme. They are honest-but-curious servers,
which follow a collusion-free protocol in which any
extra requests or communication will be ignored. The
detailed description of each participant is provided
below.

– Query Processing Server: This server acts as
a mediator between data owner, client user,
and the query response server. It performs
preprocessing steps (i.e. computing Dets and
DetsSq) on any given encrypted dataset
before persisting the dataset in the local data
store. On the other side, when it receives
the user’s query, it performs Algorithm 1 to
generate intermediate values that are processed
by the query response server to finally deliver
the simplicial depth value to the user.

– Query Response Server: For any (d + 1)-
set in the intermediate batch values, this server
is responsible to determine whether the query
point is an interior point of the corresponding
closed simplices. To make such decision, it
should have access to both public and private
keys. Eventually, the normalized aggregated
result will be sent back to the client user.

4.2 Security model

In our securitymodel, both query processing and response servers
are assumed to be honest-but-curious participants; i.e. the
two follow the protocol but may try to extract additional
information in the process. For example, cloud-side servers
may be curious about user’s queries or dataset values and
the query response server may be curious about intermedi-
ate results received from the query processing server. Note
that the honest-but-curious assumption would be respon-
sible in practice since the cloud providers should protect
their own reputation and financial interests. In addition,
there would be no collusion between collaborative cloud-
side servers. Otherwise, the private key can be revealed
and exploited by adversaries to decrypt the dataset or
queries. Since complying with collusion-free protocol has
been supposed, the query processing server will contam-
inate the data before submitting the batch intermediate
encrypted values to the query response server. Data con-
tamination is performed by applying positive noise factors.

Therefore, the privacy of the calculated batch result will
be preserved and any sensitive information will not be
guessable by query response server. Finally, it should be
mentioned that to mitigate external active attacks, some
mature message authentication code techniques or digital
signature schemes could be applied. Although more efforts
are usually required to implement them, nevertheless in this
paper, we focus on the privacy-preserving simplicial depth
query and consider those potential attacks beyond the scope
of this paper.

4.3 Design goal

Our design goal is to propose a privacy-preserving
simplicial depth query scheme over cloud to address the
challenges in the above system model and security model.
More specifically, in this paper, the following objectives
should be realized.

• Dataset owner’s offloaded dataset and user submitted
query should be protected. In the proposed scheme,
the encrypted dataset S′

ϕ , prepared and uploaded by
the dataset owner, should be effectively secured against
unauthorized access and disclosure, i.e. cloud-side
servers and the client user cannot determine the plain-
text dataset values. Moreover, the query point should
also be protected, i.e. no one, except the query user, can
determine the q or access the plaintext value of q.

• The query processing and response value should be
secured. In the proposed PSDQ scheme, not only the
dataset and user’s queries but also the computation over
encrypted data should be protected. Particularly, the
user requires to compute Q · ϕ and submit Enc(Q · ϕ)

and ϕ to get the query response. Therefore, it would
be impossible for both cloud-side servers to elicit any
relevant information about user query. On the other
hand, the query processing server has access to the
encrypted dataset and it is responsible for generating
encrypted intermediate contaminated batch values for
further processing by query response server which will
deliver the final depth value to user. Therefore, cloud-
side servers will collaborate to each other to respond the
client user without inferring the original dataset, query
values or even intermediate results.

• The proposed PSDQ scheme should be efficient.
In order to achieve the above privacy requirements,
additional computation costs will be incurred. Conse-
quently, in the proposed PSDQ scheme, we aim to
reduce the response time by considering some prepro-
cessing steps on ciphertext values, after uploading the
encrypted dataset to the data store.
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5 Our proposed PSDQ scheme

In this section, we will explore the PSDQ scheme
which mainly consists of the following elements: system
initialization, client user query, generating intermediate
batch results, and computing the simplicial depth value.

5.1 System initialization

In this phase, the dataset owner will setup the encryption
method by considering security parameters to generate the
public and private keys (PK) and (SK), respectively. Then,
the dataset owner publishes his public key PK, and securely
distributes the private key SK to the query response server.
After that, the following protocol steps will be performed in
dataset owner and cloud servers.

• Step 1: In order to securely offloading computation to
the cloud, the dataset owner will encrypt each point of
the dataset. Then, the encrypted data will be submitted
to query processing server to be stored. Assuming the
dataset S and scale factor ϕ = ϕ(k) = 10k , where k =
0, · · · , max{|decimal places|}, then the scaled encrypted
dataset S′

ϕ would be defined as follows:

∀ xi = (xi1, xi2, . . . , xid ) ∈ S;
Xi = (Xi1, Xi2, . . . , Xid ) ∈ S′

ϕ ; Xij = Enc(�ϕ · xij �),

• Step 2: For the computation of simplicial depth, to
check whether the query point is an interior point
of a given triangle, it is needed to compute 3 two-
by-two determinants. Hence, to shorten the response
time, after receiving the encrypted data, the query
processing server will perform some preprocessing
activities to generate and store the determinant of each
triple encrypted data points. The corresponding results
(Dets and DetsSq), which are the proper inputs for
Algorithm 1, would be stored in the local data store.
In order to compute the elements of Dets, the function
DetCompute is required to be defined as follows. For
every triple of encrypted planar points A, B, and C,

DetCompute(A, B, C) = det (B 
 A,C 
 A)

= det

([
B1 
 A1 C1 
 A1
B2 
 A2 C2 
 A2)

])

= ((B1 
 A1) ⊗ (C2 
 A2)) 

((B2 
 A2) ⊗ (C1 
 A1)) .

Referring to the definition, Dets and DetsSq can be given
by:

Dets = {DetCompute(Xi, Xj , Xk)} (2)

DetsSq = Dets � Dets = {D ⊗ D; D ∈ Dets}, (3)

where 1 ≤ i < j < k ≤ n and Xi, Xj , Xk ∈ S′
ϕ .

5.2 Client user query

Given the public key, the end user will encrypt the query
point q = (q1, q2, . . . , qd) ∈ R

d , as follows:

Enc(ϕ · q) = (Enc(ϕ · q1),Enc(ϕ · q2), . . . ,Enc(ϕ · qd))

= (Q1, Q2, . . . , Qd) = Q.

The obtained Q and the corresponding ϕ should be
submitted to the query processing server in order to compute
the simplicial depth value.

5.3 Generating intermediate batch results

After receiving the client user’s encrypted query Q,
processing server runs Algorithm 1 in order to generate
the encrypted contaminated batch results of barycentric
coordinates $ = {{α, β, γ }t }. These results will be passed
to the query response server.

Note: To prevent the query response server from
reconstructing the dataset or query point, each encrypted
barycentric coordinate should be altered before inserting
into the encrypted batch $. This alternation could be
achieved by shuffling or contaminating the barycentric
coordinates. In our implementation, to encumber the query
response server from guessing not only the dataset and
query but also the original α, β, and γ values, the
contaminating method (line 7 of Algorithm 1) has been
employed.

5.4 Computing simplicial depth value

Upon receiving the batch results $, the query response server
decrypts each row of the batch results {α, β, γ } ∈ $ to check
whether the current triple contributes the simplicial depth
value. Finally, the aggregated value should be normalized by
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the batch size, and reported to the client user. This process
could be done by applying Algorithm 2.

6 Security analysis

In this section, we analyze the security of the proposed
PSDQ scheme. More particularly, the privacy properties of
encrypted dataset (S′

ϕ), encrypted scaled query point (Q) ,
and the reported normalized depth value are studied.

– The encrypted dataset (S′
ϕ) is privacy-preserving. In

the proposed scheme, the floating point values are
supported by offering different scale factors. The scaled
dataset is encrypted using BFV scheme, and stored
on external cloud server. As BFV has obtained its
hardness from Ring Learning with Error (RLWE)
problem, no one can access to original dataset value,
without knowing the private key. Meanwhile, since we
have assumed collusion-free protocol between cloud-
side participants, the response query server won’t also
falsify or tamper the original dataset even accessing the
private key.

– The query Q and its related computation are also
privacy preserving. Using the public key PK, the client
user can prepare and submit Q = Enc(ϕ.q) to the
cloud. Same as the client user, the query processing
server has only access to the public key; hence, it
would not be able to infer the user original query.
Consequently, both the dataset and the user query would
be hidden. Therefore, up to this point, the privacy
preserving requirements on the simplicial depth query
can be accomplished in PSDQ. Since BFV scheme
can homomorphically evaluate the related arithmetic
circuit, the query processing server performs Algorithm
1 to securely generate the encrypted batch results $.

– Generating the user response is privacy preserving.
The encrypted batch result should be forwarded to
the query response server. Since the batch results are
contaminated by applying some positive random noise

(r1, r2, r3), the query response server would not be
able to predict original query point or dataset even if
it has access to the private key. It will only decrypt
the altered intermediate batch values to check whether
they contributes in the DepthV alue. In this step, the
only required computation is comparing the decrypted
values with zero. The decrypted positive values cause
the DepthV alue to be incremented by one to represent
the contribution of each entry in |$| (Algorithm 2).

From the above analysis, our PSDQ is arguably privacy
preserving as a method for simplicial depth queries.

7 Experimental evaluation

To evaluate the performance of the proposed PSDQ

scheme, we implemented both plaintext and ciphertext
algorithms for computing planar simplicial depth of a query
point. For ciphertext mode two different scenarios, with
and without precomputation, are considered. We run our
implementations on datasets with different sizes, i.e. n. The
elements of both datasets and queries are some randomly
generated points with four decimal places within the square
{(x, y)| x, y ∈ [−1, 1]}. All the implementations are done
in C++ together with SEAL library [36]. The experiments
are conducted on a desktop computer with Intel i5-2400
3.1 GHz processor, 8 GBRAM, Ubuntu 16.04 platform. The
detailed parameter setting are provided in Table 1.

7.1 Query response time

Generally speaking, the homomorphic computation over
ciphertext in arithmetic circuits is a time consuming
process. Since computing the simplicial depth requires large
numbers of arithmetic operations, one way to decrease the
query response time is to do all precomputable activities
in advance. For example, in simplicial depth query, some
of the two by two determinants (i.e. Dets and DetsSq

in Eqs. 2 and 3) can be calculated and stored once the
data is uploaded by the dataset owner. As illustrated in
Fig. 4a, the required time for computing Dets and DetsSq

Table 1 The parameter settings

Parameter Value

Security parameter λ λ = 128

Coeffient modulus κ = κ1.κ2 |κ1| = 55, |κ2| = 56

Polynomial modulus Φd = xd + 1 d = 4096

Plaintext modulus t t = 256

Dataset size n n ∈ {5, 10, 15, ..., 100}
Scale factor ϕ ϕ ∈ {10, 100, 1000, 10000}
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Fig. 4 Computational costs in the proposed PSDQ scheme

increases dramatically as the size of dataset increases. The
results of our experiments for 10 queries are recorded.
Figure 4b represents the differences in average response
time of 10 queries for both scenarios (i.e. with and
without precomputing). Especially for large datasets, the
query processing time substantially reduces when Dets and
DetsSq are precomputed.

7.2 Accuracy of the results

Plaintext modulus t for PSDQ establishes the size of
the plaintext data type. At the same time, it affects the
noise budget determination and noise consumption in
homomorphic computations. Therefore, trying to keep the
plaintext data type as small as possible is essential to achieve
the best computational performance. Since the proposed
PSDQ scheme accepts only integer values, floating point
data should be converted into integer values using various
scaling factors ϕ to form S′

ϕ . Consequently, a trade-off
between desired accuracy and scaling factors will exist.
To analyze this trade-off, two dissimilarity measures |., .|e
and |., .|c are employed. These two measures respectively
represent the data depth Euclidean distance and poset

dissimilarity metric [37]. For given depth value vectors SDa

and SDb, these measures are defined as:

|SDa, SDb|e = 1 − r2 (4)

|SDa, SDb|c =

n∑

i=1

n∑

j=1
|MSDa

ij − M
SDb

ij |

n2 − n
, (5)

where r2 is the coefficient of determination and matrix
MD

n×n is the Hamming matrix related to depth function D,
and it is defined as follows:

MD
ij =

{
1 depthD(xi) ≤ depthD(xj )

0 otherwise.

Since r2 ∈ [0, 1], the value of both Eqs. 4 and 5 are within
[0, 1], where the smaller value represents more similarity
between SDa and SDb. The accuracy of the results can be
computed in two following forms.

Acc1 = 100
(
1 − √|SDa, SDb|e · |SDa, SDb|c

)

Acc2 = 100

(
1 − |SDa, SDb|e + |SDa, SDb|c

2

)
,

Table 2 A comparison
between dissimilarity values S′

ϕ |(SD, SDPSDQ)|e |(SD, SDPSDQ)|c Acc1 Acc2

ϕ = 10 0.0359 0.0763 94.77 94.39

ϕ = 100 1.6860e-04 0.0116 99.86 99.41

ϕ = 1000 8.1835e-06 0.0012 99.99 99.94

ϕ = 10000 0 0 100 100
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Fig. 5 Comparison of corresponding contours for different scale factors ϕ

where Acc1 and Acc2 are respectively defined based
on the geometric mean and the arithmetic mean of two
dissimilarity values.

Table 2 illustrates the accuracy comparison for SD and
SDPSDQ in simplicial depth computing with respect to
different scaled encrypted datasets S′

ϕ .
In addition to the aforementioned results for different

scalling factors ϕ, the corresponding contour plots of
simplicial depth can be seen in Fig. 5b, c and d. For the
scaling factor ϕ = 10000, the contour plot is ignored
because the results for this case and for the original dataset
with floating points values (Fig. 5a) are exactly the same
(see the last row of Table 2).

8 Conclusion and future work

Although simplicial depth is one of the most influential
and well-studied depth functions in both non-parametric
data analysis and computational geometry, expensive to
compute, especially in higher dimensions. In this paper,
we presented a privacy preserving query scheme namely
PSDQ to compute the simplicial depth of a query point.
In other words, considering the privacy-preserving goals,
computing the simplicial depth of a query point q ∈ R

2 with
respect to a dataset S ⊂ R

2, is outsourced. To do this, BFV
RLWE-based homomorphic encryption scheme has been
considered in order to offload both storing and computing
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with the encrypted dataset. To support the proposed scheme,
a series of experiments has been provided. The experimental
results evaluate the performance and correctness of the
developed scheme. Our proposed approach is general
enough and independent from the dataset. Hence, the
scheme also works on real-world datasets. In our future
work, an extended scheme will be developed as a framework
to outsource computing different depth functions over cloud
servers.
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